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* Normal faults under populated areas are known to have high damage potential  Base case (60° dip) SeisSol simulations return distribution patterns consistent with previous literature ©)
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* 2009 L'Aquila, 2016 Amatrice and Norcia earthquakes * Stronger ground motions on hanging wall (R, > 0) side
* Basin and Range seismicity dominated by normal faulting earthquakes « Observed discrepancies: o o
* Scarce record due to sparse instrumentation at the time of largest normal-slip events (1915, 1954) * Simulation returns ground motions lower than |o (standard deviation) below the GMPE median values
* 2023 U.S. National Seismic Hazard Model (NSHM) active crustal models derived from scarce normal-slip strong * Dip angle in normal slip has strong effects on ground motion distributions not encapsulated by GMPEs
motion data * GMPE vs. simulation data discrepancy increases with more extreme high/low-angle faulting ‘%" ‘§
« ASKI4 dip-slip fault hanging wall term generalized from kinematic simulations of thrust faults (! * Near-fault (R, < 10 km) PGVs over |o off from GMPEs in several cases > >
* Data scarcity may cause mischaracterization of seismic hazard in populations close to normal faults (e.g. see * Strongest PGVs migrate to hanging wall (R, < 0) in low-angle faulting cases, not seen in GMPEs & 3
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Figure 1), including cities like Reno, Salt Lake City, etc. * Reverse-slip PGVs significantly higher on footwall side than in normal-slip 104 1
* Supershear rupture simulations (not shown here) return even stronger ground motions on hanging wall side
Figure |: Comparison of recorded 2009 L'Aquila earthquake PGVs vs Active Crustal model predictions
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plot shows z-scores. Data plotted 10y v v . Figures 6a and 6b: SeisSol vs. GMPE data plotted as in 4a and 4b, but for reverse faulting. Note the difference in
against R, (distance from rupture & W - | . . & - simulated PGVs between reverse and normal-slip earthquakes.
plane). Stations color coded by V35 % | s v V.o B ~ R
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* Run a suite of dynamic rupture simulations in SeisSol ~5.0 ~5.0
* Normal and reverse-slip simulations based on TPV10 benchmark test ©®) L0 (F°°f:‘(’)a" side) L J ZO(Ha”g'”g Wais'de) . (FOOEZZ“‘" side) L ] Z,O(Ha“g'”g Wa:!)s'de)
* Fault dimensions: 30x15 km Rx (km) Ry (km) 75 7.5 7.5
* Dip: 60° (variable : . : . : : :
P .( ) Figure 3: Results from a SeisSol simulation based on Figure 4: Same as Figure 2, but with data from a reverse-
* Noucleation patch: 3x3 km o 1o . , °7 T , , ~100- ~100- ~10.01
. . TPVIO (60°-dipping, 30xI5 km fault rupturing the slip simulation. The only difference between these
* Hypocenter: |2 km down-dip from midpoint of surface fault trace . , , L , , ,
surface). RotD50 (rotation-independent median of  simulations is the down-dip fault traction, which has been
* Fault ruptures the surface , , . , , , -12.51 -12.51 -12.51
. : horizontal motion) peak ground velocities (PGVs) reoriented to be up-dip. GMPEs rerun accordingly. Note
* Embedded in 100x100x42-km domain . . . . : . .
. Debpth-dependent stress barameters computed from SeisSol data are plotted in log-y scale as that, in all simulations, magnitude is different because e e e
P P P a blue line. The average of the log-median of the four stress is controlled, not final slip. e o0 r A e Bl e o r e Bl e
i 2 Examb| 3D GMPEs previously listed, matching SeisSol rupture
lgu;e ' q ansqp. eS (I)f . barameters, is plotted in log-y scale as a green line. Infill Figures 7a, 7b, and 7c: Dimensional references for (a) low-angle, (b) base case, and (c) high-angle faulting as shown
mesh used as Seisol Inpu shows one log-standard deviation (1 o). in previous figures.Axes dimensions are identical for all three plots, and measured in kilometers.

for simulations. This is the
case of a 60°-dipping fault Normal slip, M, 7.0, dip 25.0° Normal slip, M,,7.01, dip 75.0°
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* MMI V threshold
> 4 line along which PGV is | (= MMI IX threshold . : : : T
Surface bounds of fault plane * Normal and reverse-slip simulations have starkly different peak PGVs and ground motion distributions
calculated for GMPE Lo Lo . Simulated d motion for dip-s thauakes should be distineuished by directi y
, L e e e [ e e  E— imulated ground motion for dip-slip earthquakes should be distinguished by direction (normal/reverse)
mparisons. :
compa dicular to th ’ when used as substitute for real data
rbendicular ur : : : .. : :
pe Iizet ctid 3 €3 aie * 2023 NSHM in Basin and Range, if purely based on GM predictions, may mischaracterize hazard
ult tr nd cr i — — : , : : ) : :
fa,d .clce and. crosses s 2 2 * Future GMPEs would benefit from richer near-fault strong motion data, while dynamic rupture simulations can
z, midpoint. 5 5 : . )
< po Z Z temporarily substitute for scarce data in current models
e Variables: Scan this QR code to view a é é * Future work will encompass tests applying basin topography and ground velocity variations and possible
A o o - . digital version of this poster ~ 1ot ~ Lot earthquake scenarios
* Dip:25-75° (5° increment) for both mechanisms and supplemental materials
e Compare dynamic rupture simulation data to ground motion models like simulation animations. REFERENCES
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