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BACKGROUND

• Normal faults under populated areas are known to have high damage potential

• 2009 L’Aquila, 2016 Amatrice and Norcia earthquakes

• Basin and Range seismicity dominated by normal faulting earthquakes

• Scarce record due to sparse instrumentation at the time of largest normal-slip events (1915, 1954)

• 2023 U.S. National Seismic Hazard Model (NSHM) active crustal models derived from scarce normal-slip strong 

motion data

• ASK14 dip-slip fault hanging wall term generalized from kinematic simulations of thrust faults (1)

• Data scarcity may cause mischaracterization of seismic hazard in populations close to normal faults (e.g. see 

Figure 1), including cities like Reno, Salt Lake City, etc.

METHODS

• Run a suite of dynamic rupture simulations in SeisSol

• Normal and reverse-slip simulations based on TPV10 benchmark test (3)

• Fault dimensions: 30x15 km

• Dip: 60° (variable)

• Nucleation patch: 3x3 km

• Hypocenter: 12 km down-dip from midpoint of surface fault trace

• Fault ruptures the surface

• Embedded in 100x100x42-km domain

• Depth-dependent stress parameters

• Variables:

• Dip: 25-75° (5° increment) for both mechanisms

• Compare dynamic rupture simulation data to ground motion models

• SeisSol data read from mesh output

• RotD50 velocities computed from Vx and Vy data

• Ground motion prediction data obtained via OpenQuake library (4)

• Average of four Active Crustal models used in 2023 NSHM:

• Boore et al., 2014 (BSSA14)

• Abrahamson et al., 2014 (ASK14)

• Campbell & Bozorgnia, 2014 (CB14)

• Chiou & Youngs, 2014 (CY14)

RESULTS

• Base case (60° dip) SeisSol simulations return distribution patterns consistent with previous literature (5)

• Stronger ground motions on hanging wall (Rx > 0) side

• Observed discrepancies:

• Simulation returns ground motions lower than 1σ (standard deviation) below the GMPE median values

• Dip angle in normal slip has strong effects on ground motion distributions not encapsulated by GMPEs

• GMPE vs. simulation data discrepancy increases with more extreme high/low-angle faulting

• Near-fault (Rx < 10 km) PGVs over 1σ off from GMPEs in several cases

• Strongest PGVs migrate to hanging wall (Rx < 0) in low-angle faulting cases, not seen in GMPEs

• Reverse-slip PGVs significantly higher on footwall side than in normal-slip

• Supershear rupture simulations (not shown here) return even stronger ground motions on hanging wall side

SUMMARY & FUTURE STEPS

• Normal and reverse-slip simulations have starkly different peak PGVs and ground motion distributions

• Simulated ground motion for dip-slip earthquakes should be distinguished by direction (normal/reverse) 

when used as substitute for real data

• 2023 NSHM in Basin and Range, if purely based on GM predictions, may mischaracterize hazard

• Future GMPEs would benefit from richer near-fault strong motion data, while dynamic rupture simulations can 

temporarily substitute for scarce data in current models

• Future work will encompass tests applying basin topography and ground velocity variations and possible 

earthquake scenarios

REFERENCES

1. Donahue & Abrahamson. “Simulation Based Hanging Wall Effects.” Earthquake Spectra, 2014.

2. Buckreis et al. “Archive of an Earthquake Ground Motion Relational Database (GMDB) for Engineering Applications.” DesignSafe-Cl, 2025.

3. Harris et al. “A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes.” Seismological Research Letters, 2018.

4. Pagani et al. “OpenQuake Engine:  An Open Hazard (and Risk) Software for the Global Earthquake Model. Seismological Research Letters, 2014.

5. O’Connell et al. “Influence of Dip and Velocity Heterogeneity on Reverse- and Normal-Faulting Rupture Dynamics and Near-Fault Ground Motions” 

Bulletin of the Seism. Soc. Of America, 2007.

ACKNOWLEDGEMENTS

This work was supported by National Science Foundation Awards RISE-2531037 and EAR-2121666, NASA Award 80NSSC24K0736, and the Nevada 

Division of Emergency Management Award HMGP DR-4523-08-08P.

Figure 2: Example of 3D 

mesh used as SeisSol input 

for simulations. This is the 

case of a 60°-dipping fault 

in a 100x100x42-km 

domain.  Also shown is the 

line along which PGV is 

calculated for GMPE 

comparisons. This line is 

perpendicular to the surface 

fault trace and crosses its 

midpoint.

Figure 3: Results from a SeisSol simulation based on 

TPV10 (60°-dipping, 30x15 km fault rupturing the 

surface). RotD50 (rotation-independent median of 

horizontal motion) peak ground velocities (PGVs) 

computed from SeisSol data are plotted in log-y scale as 

a blue line.  The average of the log-median of the four 

GMPEs previously listed, matching SeisSol rupture 

parameters, is plotted in log-y scale as a green line. Infill 

shows one log-standard deviation (1σ). 

Figure 4: Same as Figure 2, but with data from a reverse-

slip simulation. The only difference between these 

simulations is the down-dip fault traction, which has been 

reoriented to be up-dip. GMPEs rerun accordingly. Note 

that, in all simulations, magnitude is different because 

stress is controlled, not final slip.

Figures 5a and 5b: SeisSol vs. GMPE data plotted as in Figures 2 and 3, showing the differences between low and high-

angle normal faulting. Figure 4a (left) plots PGVs for a normal-slip rupture along a fault dipping 25° (low-angle), and 4b 

shows the same for 75° (high-angle). Limits of x-axis changed to 50 km per side.

Figures 6a and 6b: SeisSol vs. GMPE data plotted as in 4a and 4b, but for reverse faulting. Note the difference in 

simulated PGVs between reverse and normal-slip earthquakes.
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Figure 1: Comparison of recorded 

PGVs and GM predictions for the 

M6.3 2009 L’Aquila earthquake. 

Models use station-specific distance 

and site parameters. Left plot shows 

GMDB (2) vs. predicted PGVs. Right 

plot shows z-scores. Data plotted 

against Rrup (distance from rupture 

plane). Stations color coded by VS30. 

Modified Mercalli Intensity (MMI) 

thresholds for intensities V and IX 

are plotted as yellow and red dotted 

lines, respectively. 
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Figures 7a, 7b, and 7c: Dimensional references for (a) low-angle, (b) base case, and (c) high-angle faulting as shown 

in previous figures. Axes dimensions are identical for all three plots, and measured in kilometers.
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